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Abstract 

Secondary organic aerosols (SOA), a subset of organic aerosols that are chemically produced in the 

atmosphere, are included in climate modeling calculations using very simple parameterizations. Estimates 

on their shortwave forcing on climate span almost two orders of magnitude, being potentially comparable 

to sulfate direct forcing. In the longwave, a neglected part of the spectrum when it comes to SOA, the 

direct SOA forcing could exceed that of sulfate and black carbon, although in absolute values it is much 

weaker than the shortwave forcing. Critical for these estimates is the vertical distribution of the climate 

active agents, pointing to SOA temperature-dependent volatility. Over the last few years, research also 

revealed the highly oxidized character of organic aerosol and its chemical aging in the atmosphere that 

partially leads to the formation of brown carbon, an absorbing form of organic aerosol. This review 

summarizes critical advances in the understanding of SOA behavior and properties relevant to direct 

climate forcing and puts them in perspective with regard to primary organic aerosol and brown carbon. 

These findings also demonstrate an emerging dynamic picture of organic aerosol that has not yet been 

integrated in climate modeling. The challenges for the coming years in order to reduce uncertainties in 

the direct organic aerosol climate impact are discussed. High priority for future model development 

should be given to the dynamic link between “white” and “brown” organic aerosol and between primary 

and secondary organic aerosol. The SOA temperature-dependent volatility parameterizations and 

wavelength-dependent refractive index should be also included. 
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1 Introduction 

During the last two decades our understanding of organic aerosols (OA) and their role on 

atmospheric composition has advanced with explosive rates, thanks to advances in both laboratory and 

field work. This is particularly true for the case of secondary OA (SOA), which is formed in the atmosphere 

by processes like chemical oxidation. Already from the 1990s it was known that SOA can form from the 

oxidation of anthropogenically-emitted aromatic compounds [1, 2], as well as biogenically-emitted 

hydrocarbons like monoterpenes [3], and other reactive volatile organic compounds (VOCs) emitted by 

vegetation [4]. Isoprene was not yet identified as an important SOA precursor [5] due to the high volatility 

of its products and the very low aerosol yields at the conditions of laboratory experiments [6, 7]. However, 

the large isoprene emissions on the global scale [8] imply that even a small yield can form substantial 

amounts of aerosol [9]. Simplified parameterizations to calculate the partitioning of the oxidation 

products of the parent VOCs and the subsequent formation of SOA have been developed [10, 11] and 

started to be used in global models [12-14], including studies of the preindustrial [15] and future 

atmospheres [16].  

SOA formation simulations are characterized by very large physicochemical uncertainties and 

computationally intensive calculations, therefore most global models were forced to adopt a simple 

parameterization to calculate SOA atmospheric distribution. The SOA formation in the atmosphere from 

precursor VOCs was emulated by an emission-like yield, with the produced SOA considered non-volatile, 

resulting in direct SOA emissions in the particulate phase, similarly to primary OA (POA) [17]. Regardless 

of whether models included a parameterization of semi-volatile SOA or the simplified flux-based approach 

of non-volatile SOA, in the mid-2000s there was enough information available to model SOA occurrence 

on the global scale [9], which led to a number of different parameterizations of various complexities 

introduced in chemistry/transport models (CTMs). Even until now though, a substantial fraction of global 

models still use the simplified SOA parameterization [18].  

During the last decade the importance of OA, including SOA, in atmospheric aerosol composition 

has been widely acknowledged. Numerous field campaigns worldwide revealed that OA are ubiquitous in 

the atmosphere, with most of them being oxygenated, which largely means secondary in nature [19, 20]. 

Besides mechanisms known to form SOA from gaseous precursors and the chemical aging of POA, a wealth 

of new SOA formation mechanisms have been identified, including oligomerization and fragmentation 

that drastically modify the volatility of SOA components [20, 21]. These have been thoroughly reviewed 

in the recent literature [21]. The general underestimation of urban SOA in models [22] has been reduced 

in more recent model simulations with sophisticated treatment of OA aging, volatility and precursor 

molecules [23]. Surprisingly, on the global scale no noticeable improvement of skill was found between 

models with the simple flux parameterization and others with more sophisticated SOA treatments [18] 

when comparing against measurements, pointing to missing sources and/or processes from models.  

In a seminal review a little over a decade ago [9], the global SOA source was estimated to range 

between 12 and 70 Tg a-1, a range that comes almost exclusively from biogenic SOA. That estimate 

overlaps with more recent evaluations of a global biogenic SOA source of 88 TgC a−1 [24] and 21.5 to 99.3 

Tg a−1 [25], which increases to 36.2-132.2 Tg a-1 when taking into account anthropogenic and biomass 

burning sources [25]. Higher estimates of 140±90 Tg a−1 or 240±140 Tg a−1 [26] also exist, which are based 
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on Aerosol Mass Spectrometer and organic carbon observations, modeling, and various assumptions 

concerning the partitioning of SOA to the aerosol phase and the role of anthropogenic VOCs. A wide range 

between 87.2 to 501.6 Tg a-1 was also reported [27], which was estimated using different assumptions of 

SOA volatility and SOA fragmentation, which also impacts volatility. A missing source of the order of 100 

Tg a-1 was also identified as the best way to bridge the gap between aircraft profile organic aerosol 

measurements and the GEOS-Chem model [28]. A high SOA formation of 150 TgC a-1 (±80%) was estimated 

using a top-down approach based on satellite aerosol optical depth (AOD) observations [29], and an even 

higher source of 140 to 910 TgC a−1 based on various mass balance approaches [30], although the upper 

end of that range is probably unrealistic. Regardless of the exact source strength, SOA sources are very 

high and comparable or higher in magnitude to anthropogenic primary aerosol sources and their impact 

on climate can be very significant, making SOA a top priority in accurately parameterizing their formation 

and fate in models. The magnitude of the impact depends on SOA atmospheric load that is determined 

both by sources and sinks in the atmosphere, their climate relevant properties, and their mixing with other 

aerosol components [9, 21, 18]. 

Although our process-level understanding of SOA formation has seen great advances the last few 

years thanks to both high quality laboratory studies and field campaigns [21], global models, both CTMs 

and general circulation models (GCMs), have not followed up with introducing new processes in their 

calculations [18], with a few exceptions [25, 31-34]. This stems from the number of free parameters that 

are required to parameterize SOA on the global scale, the computational cost that the new 

parameterizations come with, primarily due to the large number of tracers that need to be included in the 

calculations, and person-power required which is not always readily available. Although computationally 

cheap parameterizations have been developed by using empirical relationships based on measurements 

[34-36], their applicability in a climate model might be limited. This is due to the large changes occurring 

over centuries-long simulations or simulations of deep-past climates, where climate and chemical regimes 

can be greatly different from what we experience now. A comprehensive and fast modern 

parameterization that integrates most of the new process-level advances for use in global models is yet 

to be developed. 

The objective of this review is to first describe the current state of SOA modeling in CMIP-class 

models, by zooming in the only model that had interactive SOA calculations during CMIP5, the GISS 

ModelE2 [37]. Current knowledge about SOA forcing on climate is then presented by describing SOA 

optical properties. SOA volatility, probably one of the most important OA attributes currently missing from 

climate models, is explicitly discussed. The current estimates of SOA forcing calculated by several models 

in the literature, both for the shortwave and longwave, are finally presented. We conclude by proposing 

a roadmap towards future development needs to more accurately simulate SOA forcing in the next 

generation climate models.  

2 SOA in climate models during CMIP5 

Coupled climate models, which are atmospheric GCMs coupled with other Earth system 

compartments like the ocean, the biosphere, the cryosphere and the lithosphere, are highly complex 

models that require large computational resources to simulate the Earth system even at moderate 

resolutions. It is not uncommon that coupled climate models ignore processes that are considered 
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unimportant for the simulation of the Earth system, or are too expensive computationally and thus are 

being highly parameterized, or both. The 5th phase of the Coupled Model Intercomparison Project (CMIP5; 

[38]), whose results were used in the Intergovernmental Panel Climate Change (IPCC) report [39], was 

designed to create a multi-model dataset for use in climate variability and climate change applications. In 

such models, any addition of computationally-demanding processes needs to be justified by a noticeable 

impact on climate, regional or global. 

During CMIP5, OA prognostic calculations included only POA: fossil fuel and biomass burning 

sources directly inject non-volatile OA in the atmosphere. Anthropogenic SOA was explicitly included in 

just a few models, while biogenic SOA was included using a very simplified approach, which was not the 

same between models. For example, the HadGEM2-ES [40] used a three-dimensional climatology 

generated by the STOCHEM CTM [41]; the CSIRO-Mk3.6 GCM [42] assumed a constant fraction (28%) of 

terpene emissions [43] to occur as non-volatile SOA; the SPRINTARS aerosol model [44] in MIROC-ESM 

2010 [45] used a similar approach but with a yield of just 4%, while the IPSL-CM5 model [46] used an 

intermediate yield of 15% [17], the most common value among models that follow this approach [18]. 

The GFDL-CM3 model also used the yield approach [47], with yields varying latitudinally and progressively 

increasing from 11% at the tropics to 55% at the poles. This model also included an anthropogenic SOA 

source, based on n-butane oxidation, a surrogate for all hydrocarbons with 4 or more carbons (excluding 

isoprene and terpenes) that was assumed to produce non-volatile organics with a 10 % yield [48]. The 

Goddard Institute for Space Studies (GISS) GCM, GISS ModelE2 [37], was the only model in the CMIP5 

archive that included interactive calculations of SOA (calculated by the model at every time step) for 

transient experiments of both the historical [49] and future projections [50]. 

In GISS ModelE2, SOA calculations include the aerosol formation from biogenic VOCs oxidation 

and partitioning of the semi-volatile products, which takes into account the impact of nitrogen oxides 

(NOx) on aerosol formation rates via gas-phase chemistry changes, as implemented in the TM3 [14-16] 

and ECHAM5-HAM [51] models. Semi-volatile gases are able to condense on and evaporate from pre-

existing aerosols via their temperature-dependent partitioning coefficients, depending on the 

atmospheric conditions. The partitioning is the net effect of the SOA formation via condensation and the 

SOA loss via evaporation at any given time. SOA precursor gases include isoprene, whose emissions are 

calculated online and depend largely on temperature, leaf area index, and solar radiation ([43]; Fig. 1a). 

The isoprene emissions time series strongly follows temperature, resulting in an overall increasing trend 

from 1850 to 2100. Terpenes annual emissions of 122 Tg a-1 and other reactive VOCs of 71 Tg a-1 were also 

considered as SOA precursor sources [4] and were kept constant throughout the simulation, with a 

spatially-varying annually-repeated seasonal cycle, as calculated by the terrestrial vegetation model 

ORCHIDEE [52].  

Probably counter-intuitively, the formation of SOA from preindustrial into the future via 

partitioning of the gas-phase oxidation products of its VOC precursors (Fig. 1b) closely followed the time 

evolution of POA concentrations (Fig. 1c), which were driven by the decadal-mean POA emissions 

provided by CMIP5 [53], rather than SOA precursor sources. This demonstrates the importance of pre-

existing aerosols on SOA formation in a changing climate, at least using the GISS ModelE2 and the 

processes that takes into account, under the assumption that all SOA are able to evaporate under 
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favorable conditions, which is not always the case in the real atmosphere [54-56]. The time series of the 

total SOA burden calculated by the model (Fig. 1d) generally resembles that of SOA formation, as 

expected. 

3 Current state of knowledge on SOA direct radiative forcing 

Several factors are involved in accurately simulating the direct SOA impact on climate and the 

climate feedback to SOA. Other than climate parameters affecting forcing like the radiation distribution 

in the atmosphere and the presence of clouds, SOA forcing is proportional to SOA AOD, which can be 

calculated as the product of the SOA column abundance and SOA mass extinction efficiency, a measure 

of aerosol light extinction per unit mass [57]. Care must be taken in the exact definition of extinction 

efficiency, which can be found as extinction coefficient in the literature, with the “extinction efficiency” 

term being used differently [58]. The extinction efficiency, which is the sum of the scattering and 

absorption efficiencies, depends on the chemical composition of SOA and changes with wavelength, based 

on the wavelength-dependence of its refractive index, which describes how light propagates through a 

medium.  

For the column abundance calculation, aerosol sources, transport, processing and removal have 

to be taken into account. Then, the different optical properties of the various SOA species are used to 

calculate the AOD of the different SOA species for a given size distribution. Aerosol microphysical 

properties, including their size distribution and mixing state, also impact the effective optical properties 

of both pure and mixed aerosol populations. OA coating that forms via condensation can amplify freshly 

emitted fractal Black Carbon (BC) absorption by up to 15% and scattering by up to 100%, depending on 

the refractive index of the coating material [59]. When neglecting the enhanced absorption of BC that is 

internally mixed with OA, the mass absorption efficiency of OA can be biased high by up to 50%  [60]. SOA 

are also known to be important in new particle formation [34], which influences aerosol number 

concentration and can affect both the direct [13] and indirect [61-64] radiative forcing.  

Although remarkably complex, for climate modeling purposes the SOA representation needs to 

be reduced to the minimum amount of species, processes and properties required to accurately simulate 

the radiative effects of SOA on climate, rather than focus on simulating atmospheric composition in all 

the great detail measured in the field. For this, all discussion below will focus on the radiative forcing 

potential of SOA, and only go into the finer process-based details that might matter as a direct climate 

forcing agent. 

3.1 SOA optical properties 

Due to the enormous complexity of SOA in the atmosphere, which is a result of different sources, 

processing, removal, and the spatiotemporal heterogeneity of them, SOA optical properties are expected 

to change with aerosol composition. Indeed, this was demonstrated in chamber experiments for both SOA 

[65] and total OA [66]. However, only few systematic studies exist that try to resolve the change of optical 

properties of OA as a function of composition [67, 68].  

There can be two types of SOA in models, based on SOA optical properties determined 

experimentally: the non-absorbing and the absorbing ones, while both scatter radiation. The former is 
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frequently called “white” in the literature and the latter is called brown carbon (BrC), due to its brown 

color at visible wavelengths. Most models use similar refractive indices for non-BrC OA (both POA and 

SOA) at 550 nm: 1.53-0.006i (Table 1), a value that probably originated from the OPAC database [69] or 

even earlier. The choice of this value makes non-BrC SOA slightly absorbing in models, since the imaginary 

part of the refractive index is non-zero. There exist at least two notable exceptions: GISS ModelE, which 

has a higher imaginary part (0.014; [37]) that implicitly assumes that OA is a little more absorbing than 

other models and thus implying the presence of BrC without explicitly modeling it, and HADGEM2-ES, 

which assumes that SOA is completely scattering and has a lower real part than all other models. GEOS-

Chem-APM also uses a low real part for SOA (1.45; [70]) that was derived from model calculations 

evaluated against data across Europe [71]. The models listed in Table 1 are among the ones that 

participate in AeroCom [72], which are occasionally either CMIP-class models (e.g. GISS ModelE, 

HADGEM2-ES), or aerosol modules of CMIP-class models (e.g. GOCART, SPRINTARS). Not all models are 

surveyed in Table 1, and similar or additional differences might exist in unlisted models.  

Overall, the refractive index of aerosol components, and especially its wavelength dependence, 

is one of the most poorly documented parameters in aerosol global modeling.  

3.1.1 Non-absorbing SOA 

While there is tremendous momentum in the determination of the refractive index of BrC (see 

next section), there are few recent studies that aim to measure the refractive index of non-BrC OA in the 

laboratory or in the field (summarized in [73]). Most of these studies measure the real part of the 

refractive index without concurrent determination of the imaginary part.  

The real part used by models approximates aged SOA as measured in chamber experiments [65] 

and not fresh SOA which has been measured to have a real part of its refractive index as low as 1.38 [65]. 

Aging was found to further modify the chemical composition of OA and its optical properties in chamber 

experiments [66, 74], with photochemical oxidation and dark oxidation having different effects. SOA with 

different volatilities has been also shown to have different real refractive indices [75]. During the Deep 

Convective Clouds and Chemistry (DC3) field experiment the real part of the refractive index of mixed 

aerosols (more than 50% organics by mass) was found to be around 1.5 and slightly decreasing with 

increasing altitude [76], although no global conclusions can be deduced from a few profiles during a single 

campaign. In addition, studies have shown that the real part of the SOA refractive index decreases with 

increasing wavelength in the visible [77, 78], but no studies exist for its refractive index in the infrared 

(IR). 

The different refractive indices per SOA compound would impact radiative forcing calculations, 

had these finding been introduced in model calculations. Whether the refractive index of purely scattering 

SOA changes with time, composition and wavelength, and especially with regard to its IR absorption, is 

negligible for climate purposes, is yet to be quantified. To our knowledge, there is no study trying to 

quantify the model sensitivity of the SOA refractive index choice on neither shortwave nor longwave 

radiative forcing.  

3.1.2 Absorbing SOA 
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BrC, a subset of organic aerosols, is a complex mixture of organic compounds lacking a formal 

analytical definition. Its light absorption is weaker than that of BC, with mass absorption efficiency less 

than 1 m2 g-1 at 550 nm, but a strong wavelength dependence [79]. BrC absorption increases rapidly into 

the UV spectral region [80], which is the typical way to experimentally separate organic absorption from 

that of BC [81], which shows no wavelength dependence in the visible [82]. Organic material can lead to 

enhanced absorption [83] either by absorbing light itself (which is source-dependent and not well 

quantified) or by absorption amplification [84], where coating of non-absorbing material around BC or 

other absorbing particles increase the overall absorption of the mixed particle [83]. Depending on what 

measurement technique is used, measurements may quantify one or the other or both.  

BrC can be directly emitted in the atmosphere [85], or form chemically by non-absorbing aerosol 

precursors and precursor gases. Among the processes currently missing from most climate models, one 

of the most important is the aqueous chemistry of soluble gaseous organic compounds, both in cloud [86] 

and aerosol water [87-90], which leads to the formation of SOA [91, 92, 31]. Its importance lies not only 

in the fact that it can form new organic aerosol mass; products from aqueous chemistry, and primarily 

from aerosol water chemistry, can be light absorbing BrC [93]. The formation of SOA in the aqueous phase 

(aqSOA) is important for SOA, and models and measurements occasionally disagree on the importance of 

cloud water as a medium for aqSOA formation compared to that of aerosol water [94, 95]. A possible 

reason for this disagreement is that oxalate, whose typical concentration is less than 5% of total OA in 

cloud water, has been used as the proxy for measuring cloud aqSOA, because it is hard to separate total 

SOA from aqSOA in measurements [92]. Uncertainties in oxalate formation pathways in clouds can 

strongly influence our understanding when modeling oxalate and extrapolating that to total aqSOA.  

Although part of BrC is primary in nature, it can rapidly change optical properties by either 

bleaching [96-99] or browning [100]. For this, it will be considered here as light absorbing SOA, since it is 

its time-evolving optical properties that affect climate in the long term, rather than those at emission 

time. The BrC formation rate has been measured in laboratory experiments [101], as has the complex 

refractive index of toluene-SOA as a function of NOx levels [78]. Reactions of both anthropogenic and 

biogenic SOA precursors with gaseous NH3 have also been found to form BrC [102]. There is evidence from 

laboratory studies that particle‐phase chemical reactions of organics with inorganic salts can produce SOA 

which absorbs light in the UV and visible [80], and this absorption can be pH-dependent [103]. The 

refractive index of BrC has been also measured in the field [104]. In the real atmosphere, where aerosols 

are much more complex, BrC identification remains a challenge. Organic absorption attributed to BrC has 

been measured in a number of locations around the globe [105-108] and has been found to be associated 

with the water soluble fraction of OA [109]. BrC has been observed in air influenced by either pollution or 

the burning of biomass or biofuel [110], with nitro-aromatic compounds contributing at least half of the 

biomass burning absorption across a wide range of visible wavelengths [111]. The presence of BrC in 

OA/BC mixtures modifies absorption and absorption amplification, with BrC absorption increasing during 

biomass burning while the ratio of BC:OA increases [112]. Solid or semi-solid organic aerosols (tar balls) 

also absorb solar light and in that context can be also considered as BrC [113]. 

One of the biggest uncertainties when it comes to BrC is its spectrally-varying refractive index, 

which can be used for its detection [114, 102]. Studies exist [115] that used a refractive index of 1.67-0.27i 
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without spectral dependence, by assuming that the less than 10% measured changes in the real and 

imaginary parts of the refractive index [104] are not significant in terms of radiative forcing calculations. 

A constant real part of the BrC refractive index was mostly used in past studies, with very similar values 

being used, equal to 1.53 [116], 1.55 [117, 110], and 1.67 [115], all within the reported range of spectrally-

varying values [104]. However, the radiative forcing efficiency of BrC (radiative forcing per unit mass) can 

differ by a factor of 3 and even change sign between near-UV and mid-visible wavelengths, an effect that 

was attributed to changes in the imaginary refractive index of BrC alone [117]. The dependence of the 

imaginary part of the refractive index on wavelength differs widely between studies: it can be as strong 

as orders of magnitude change between 350nm and 700nm [117] based on refractive indices estimated 

by different studies [79, 116], while other studies [104] calculated a much more modest change, even for 

a wider wavelength range. The chemical nature of BrC can be responsible for these differences: low 

temperature combustion processes, including biomass burning, produce light-absorbing aerosols that 

exhibit much stronger spectral dependence than do high-temperature combustion processes, such as 

diesel combustion [79]. An enhanced absorption by OA in the summer months in southern California 

(related to forest fires and SOA) has also been attributed to BrC [118], where its absorption at 440 nm was 

measured to be 40% of that of elemental carbon, whereas at 675 nm it was less than 10% of that of 

elemental carbon.  

Theoretical calculations have shown that if BC is coated by BrC, instead by a purely scattering 

shell, the absorption amplification diminishes [83]. Field measurements confirmed this calculation, 

although the BrC shell absorption ultimately leads to increased absorption of the mixed particle that can 

also contain purely scattering agents like sulfate and “white” OA [119]. BrC significantly contributes to 

light absorption in the early morning [120], a fact also supported by laboratory experiments [87]. 

3.2 SOA volatility 

The volatility of SOA has been shown to be of importance in all contexts, both experimental and 

theoretical. Its determination in the field can be subject to artefacts and can vary significantly between 

experimental approaches [56], with important implications in simulating aerosol volatility in models. The 

temperature dependence of volatility, which is characterized by the enthalpy of vaporization (ΔHvap), is of 

great importance for SOA formation [14]. Semi-empirical parameterizations have been proposed to 

calculate ΔHvap as a function of SOA volatility [121]. Measurements of ΔHvap differ by a factor of 3 for 

different SOA compounds [122-124], a variability that greatly impacts model results [14] that can’t simply 

be worked around by the use of a surrogate compound group [125, 126].  

Compounds with different volatilities have different physical, chemical and optical properties, and 

it is of importance to simulate them accurately, since the vertical distribution of aerosols changes aerosol 

radiative forcing potential, especially for absorbing compounds [127], and aerosol lifetime [55]. Changes 

in the volatility of bulk SOA occur either via aging in the atmosphere to higher functionality compounds 

or oligomerization (which leads to decreased volatility) or fragmentation (which leads to increased 

volatility), or via changes in the atmospheric conditions (e.g. temperature). It is now almost 20 years since 

models first simulated the presence of SOA in the upper troposphere [9, 14, 128], a finding that was 

supported by aircraft measurements [28]. Only very recently solid measurements were made available 

that explain the presence of SOA in the upper troposphere [129], which is due to convective transport of 
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organic gases and their precursors that are too volatile to condense near the surface, but partition in the 

aerosol phase at sufficiently low temperatures. The conversion of semi-volatile SOA to non-volatile is the 

dominant factor generating variability in surface-level SOA during daytime in models [130]. Larger model 

diversity has been found in the upper free troposphere than at surface, in particular over the poles, 

leading to the similar conclusion that the processes involving low temperatures are not well constrained 

or they are absent in models [18, 130]. 

3.3 SOA radiative forcing 

In GISS ModelE2 (Fig. 1), the AOD of SOA changes linearly with its burden from a global mean 

value of 0.007 in the preindustrial to about 0.0095 at present day, until decreasing again to almost the 

preindustrial levels in 2100, and is of comparable magnitude with that of POA (not shown). Both the SOA 

chemical production and burden of GISS ModelE2 lie at the low end of the range of the global models that 

participated in the AeroCom OA intercomparison [18]. Such OA underestimation was however 

demonstrated that was the typical behavior for most models when comparing models against 

measurements.  

The calculated SOA direct forcing maximizes in the decades around the year 2000 for both the 

shortwave (Fig. 1e) and longwave (Fig. 1f), consistent with the change in SOA burden with time. Regardless 

of which representative concentration pathway (RCP) projection is used as a future scenario, the 

calculated SOA forcing does not differ significantly from each other when compared to SOA forcing 

interannual variability (less than 10%), which is smaller than the 250 year calculated changes (about 30-

35%). Compared with other aerosol components, the SOA shortwave forcing is calculated to be roughly 

the same with that of POA, 4 times smaller than that of sulfate aerosols and 3 times smaller than that of 

BC (but opposite in sign) in GISS ModelE2, while the SOA longwave forcing is about 50% higher than that 

of sulfate and almost an order of magnitude higher than that of POA and BC. This strongly depends on the 

choice of OA optical properties, as detailed above. In GISS ModelE2, SOA and POA have the same optical 

properties; their large difference in longwave forcing is therefore probably related to the vertical 

distribution of aerosols: POA stays mostly in the lower part of the troposphere, while SOA can extend all 

the way to the tropopause [9, 18, 14].  

In global climate models, due to the high uncertainties in SOA calculations and to save 

computational resources, SOA was treated as part of POA. A key implicit assumption in justifying this was 

that the OA forcing on climate would add linearly between POA and SOA, assuming negligible non-

linearities between the two OA components. Although on first order this assumption is reasonable, when 

feedbacks are introduced it might not stand. Such a complication was demonstrated when comparing 

single-forcing experiments in CMIP5 with the sum of the response: when chemistry and aerosols were not 

calculated interactively (prognostically), single forcings were adding fairly linearly, while when interactive 

chemistry and aerosols were introduced in the calculations feedbacks via precipitation changes were far 

too large to be considered negligible [131]. The feedbacks introduced with interactive atmospheric 

composition calculations had consequences for important climate variables even at the largest scales, 

making the addition of single forcing experiments statistically different at 99% level of confidence from 

the simulations where all forcings were applied simultaneously. The results presented in Fig. 1 together 

with the large difference in longwave forcing between POA and SOA demonstrate that the case of SOA 
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might be one additional example of non-linear feedbacks that need to be taken into account in future-

generation models. Feedbacks in the Earth system are very important for SOA, since changes in 

temperature affect reaction rates, partitioning, and vegetation distribution, changes in CO2 affect 

vegetation photosynthetic rates, and changes in aerosols affect the ratio of diffuse/direct solar radiation, 

which also affect photochemistry, photosynthesis and biogenic SOA precursor emissions [132, 133]. In 

addition, changes in meteorology modify precipitation, a major removal mechanism for all aerosols. 

Precipitation also changes in a changing climate, adding an additional feedback mechanism to SOA 

budget.  

Most studies to-date either calculate the shortwave forcing of SOA, or do not explicitly state 

whether they report the shortwave or total forcing. Since the longwave forcing of SOA is smaller in 

magnitude than the shortwave one (because most of SOA resides in small aerosol sizes) and negligible 

compared to cloud longwave forcing, when no clear statement is made about shortwave or total forcing 

in the literature, we present here those results as shortwave forcing. In addition, care must be taken when 

studies compare anthropogenic forcing, which is the difference between a present-day and a preindustrial 

simulation, since the levels of natural aerosols during preindustrial are strongly impacting the overall 

anthropogenic aerosol forcing, especially when that involves aerosol-cloud interactions [134].  

3.3.1 Shortwave 

The shortwave SOA forcing has both a scattering and an absorption component, depending on 

the chemical composition and mixing state of SOA, based on the effective refractive index of the mixed 

aerosol population. In addition, the absorption of UV radiation by BrC has the potential to perturb 

tropospheric photochemistry, reducing ozone levels at the lower layers of the atmosphere [135, 136]. BrC 

can also affect the upper parts of the troposphere [137], where UV radiation is more abundant. BC was 

found to increase its radiative forcing efficiency with altitude [127], mostly because when BC is above 

clouds the underlying surface albedo increases [138, 139]. This is probably true for BrC as well, since two 

thirds of the total BrC forcing occurs in the upper half of the troposphere, despite its small amount at 

those altitudes, making it an unappreciated component of climate forcing [137]. 

There are several estimates of the SOA forcing in the literature, but not all of them are directly 

comparable to each other, due to the different assumptions in models. Two key parameters need to be 

considered when comparing forcing numbers from the literature among models: one, whether BrC has 

been considered in any of the models, and two, whether that BrC is assumed to be primary (i.e. directly 

emitted), secondary (i.e. chemically produced), or both. In addition, care must be taken regarding the 

aging of OA: for example, there are models that consider aged POA as SOA [140], which is a common 

assumption when using the volatility-basis set (VBS) to represent OA [141]. As of today, there are no CMIP-

class models using VBS, but this framework is now being adopted by an increasing number of models, 

both regional and global, so the direct comparison of POA and SOA between studies might become more 

challenging in the future.  

The overall range of SOA direct forcing reported in the literature spans from -0.01 W m-2 to -0.78 

W m-2. In particular, the AeroCom phase II experiment reported SOA direct forcing ranging from -0.01 W 

m-2 to -0.21 W m-2 [142], with a mean (median) value of -0.06 (-0.02) W m-2, a value that is greatly affected 

by the SOA burden in each model. Indeed, in the GLOMAP model the direct forcing is calculated to range 



12 
 

between -0.08 and -0.18 W m-2 depending on physics assumptions, but it becomes -0.09, -0.33, and -0.78 

W m-2 for half, 2-times, and 5-times the SOA mass yield, respectively [63], an almost linear relationship 

between source strength and forcing. A range of SOA forcing as high as -0.26 to -0.5 W m-2 has been 

calculated with different volatility and fragmentation assumptions [27], although this range corresponds 

to much higher SOA burden than in most models. The anthropogenically controlled SOA, which comes 

from a SOA source linked to CO emissions [26], was found to create a direct forcing of -0.26±0.15 W m-2, 

with the uncertainty coming from a range of possible anthropogenic emission fluxes. Care should be taken 

though when classifying anthropogenic vs. biogenic SOA, since anthropogenic emissions can affect 

biogenic SOA formation by changing atmospheric composition and impacting the chemical formation of 

biogenic SOA [12, 26, 143]. In addition, as was demonstrated in Fig. 1, the impact of the largely 

anthropogenic POA on biogenic SOA partitioning can also complicate the attribution of a given SOA mass 

as anthropogenic or biogenic, since the chemical identity of SOA would be secondary but the physical 

process that favored partitioning of biogenic semi-volatile gases in the aerosol phase can be 

anthropogenic in nature. The size and refractive index of aerosols also contribute to the SOA forcing 

uncertainty, which was calculated to range from -0.12 to -0.31 W m-2 in the IMPACT model [116], a range 

which also includes sensitivity studies between strongly and weakly absorbing BrC. Over China the choice 

of refractive index for SOA affected forcing results by more than 50% [73]. BrC reduces the cooling effect 

of OA by 16%, which highlights its significance on the total OA forcing [144].  

The choice of the nominal reference year is also affecting anthropogenic forcing calculations. The 

GEOS-Chem-TOMAS model calculated that biogenic VOC emissions changes during the last millennium 

exert a positive total aerosol forcing between +0.022 and +0.163 W m-2, which is a combination of SOA 

source strength and size distribution changes, an effect which is probably overlooked [64]. This impact is 

larger regionally, since over oceans the forcing is less than +0.05 W m-2, but over land there are large 

regions that can exceed +0.5 W m-2 [64].  

The evolution of SOA burden into the future has been studied mostly using the year 2100 as a 

reference. In the CAM3 model, a 36% increase in SOA burden was calculated and attributed to both 

increases in SOA precursors and POA emissions [145]. An increase equal to 54% in SOA burden was 

calculated by the GISS II’ model from present day to 2100, while POA was more than doubled during the 

same period. The change of OA resulted in a total OA forcing of -0.58 W m-2 [146]. Using future climate 

(as forced by CO2 concentrations and natural emissions) but present-day anthropogenic emissions, SOA 

increased by 8% due to climate change impacts on natural emissions and chemistry [146]. In both 

simulations, a 50% increase of SOA precursor emissions was used but resulted in different increases in 

SOA burden: 8% without and 54% with changes in anthropogenic emissions, that shows a non-linear 

response of SOA formation to precursor emission changes. POA, the main SOA burden driver at centennial 

timescales based on GISS ModelE2 results, remained constant in the GISS II’ simulation with the modest 

SOA increase, which makes it likely that POA is also a key driver in GISS II’. A similar result was obtained 

with the TM3 model, where an increase by a factor of 2.5 in SOA burden was calculated, as a result of a 

doubling of POA emissions, 50% increase of isoprene emissions, and doubling of monoterpenes emissions 

[16]. Keeping SOA precursor emissions to present-day levels contributed to an increase on the SOA burden 

by 16%, a result of increased POA. The SOA forcing due to the SOA burden increase between present-day 

and the year 2100 ranges between -0.04 and -0.24 W m-2 [133]. These results should be compared with 
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those presented in Fig. 1 from GISS ModelE2, where a decrease of POA, an increase of isoprene, and 

constant terpenes emissions led to a decrease of SOA in the future, resulting in a decrease in forcing to 

about -0.11 to -0.12 W m-2 for the various emission scenarios in the shortwave in 2100, a bit higher than 

the 1850 forcing.  

3.3.2 Longwave 

Very few studies have focused on the longwave forcing of aerosols other than sulfate and dust, 

although these calculations are implicitly present in all GCMs. Alaskan boreal fires have been shown to 

affect more the longwave rather than the shortwave [147], with most of the response coming from 

surface temperature changes rather than biomass burning emissions, including OA. In the Himalayan 

region the longwave forcing of total aerosols was found to exceed that of the shortwave [148], which was 

suggested to be an important contributor to the climate of the region. Longwave forcing was also found 

to correlate well with temperature changes and had a different distribution during monsoon and non-

monsoon seasons.  

On the global scale, SOA direct longwave forcing since preindustrial times was calculated with the 

ECHAM-HAM model to be +0.02 W m-2 under clear-sky conditions [51], which is comparable in magnitude 

with the +0.01 W m-2 presented in Fig. 1f from the GISS ModelE2 for all-sky. Both models use the same 

SOA parameterizations, but ECHAM-HAM includes aerosol microphysics, while GISS ModelE2 uses a bulk 

aerosol scheme. The small value of this number is due to the size of SOA which is in general much smaller 

than the wavelength of light in the longwave, and has been considered to be negligible when compared 

to total longwave changes due to clouds [149] in the CAM3 model. Although this assumption is 

reasonable, since only desert dust aerosols (due to their high burden) and volcanic sulfate aerosols in the 

stratosphere (due to their high altitude) contribute significantly to the total aerosol longwave forcing 

[150], it needs to be quantified with other models as well. The almost an order of magnitude difference 

in longwave forcing in the GISS ModelE2 between POA and SOA serves as an indicator that SOA longwave 

forcing, probably due to their presence in the upper troposphere, is an underappreciated climate forcer.  

4 Climate modeling of SOA in future-generation models 

Climate modeling will remain a challenging field, where the choice between accurate but 

computationally-demanding parameterizations and model performance need to be balanced. Given the 

fact that climate models are primarily used to understand present climate, reproduce past climates, and 

predict future climate change, any new parameterizations need to be developed in a way that serve this 

primary goal, climate prediction. A climate model is not the tool to accurately simulate atmospheric 

composition with the maximum detail possible, which means that reducing, or even eliminating processes 

that are important for atmospheric composition but not for climate is a common compromise. For SOA 

direct effect, this reduces to simulating SOA concentration and optical properties in space and time, which 

then allows the estimation of the radiative impact of SOA on the global scale, rather than calculating the 

detailed SOA formation and composition. In CMIP5 all models had major weaknesses in accurately 

simulating SOA distribution, thus all results presented above are subject to change after implementing 

missing sources and processes. The direction of change is hard to predict, though, but it is likely that for 

CMIP6 there will be many more models having more detailed SOA calculations, and not just one.  
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Although it is not yet clear which of the SOA formation pathways recently discovered [21] are key 

in simulating the atmospheric SOA distribution, volatility is probably sitting at the top of the priority list 

for OA model development. This likely includes both the inclusion of emissions of compounds with 

different volatilities, either using the VBS approach or not, but also the chemical processing that alters the 

volatility distribution in the atmosphere, both increasing it (e.g. fragmentation) and decreasing it (e.g. 

functionalization, oligomerization). Although we do have some information already, in order to accurately 

simulate volatility of OA and its atmospheric evolution with time and space (including temperature 

changes) more systematic laboratory and field studies are needed to explore the parameter space of the 

global atmosphere, including high altitudes. In addition, emission inventories need to be altered to both 

split the current OA emissions in volatility classes, and also include more information of the IVOCs that 

are currently missing. It is known for more than a decade that different assumptions in SOA volatility 

calculations can affect its vertical distribution, including irreversible sticking of semi-volatile organics [14]. 

Since a significant fraction of SOA is semi-volatile [21 and references therein], and parameterizations of 

different complexities already exist in the literature, they need to be included in all GCMs. The 

temperature dependence of volatility is also known to be of paramount importance for aerosol 

distribution [14], but this factor is less constrained and is frequently handled as a free parameter by 

models. The results of GISS ModelE2 regarding the effect of POA on SOA likely mean that either POA is 

too high, or SOA too volatile, or both. Comparisons with field measurements of OA volatility should be 

able to guide future model development and constrain this uncertainty.  

The most important sources of SOA precursors are already included in models, but important 

processing of them is still missing from climate models. This includes processes like aqueous formation 

and modification, oligomerization, fractionation, and formation of newly identified products, to name a 

few. The processes that affect volatility (e.g. oligomerization) and optical properties (e.g. aqueous 

processing) are important to be included first. The model particularities, complexity and the different 

priorities research groups have on using their models to answer non-climate questions, will likely guide 

future developments. A number of chemistry/transport models already include aqueous chemistry of OA 

in their parameterizations with different degrees of complexity [31, 151], which are not very 

computationally demanding for use in a climate model. Indeed, the GFDL AM3 model already contains 

aqueous OA formation in its calculations [152, 153]. 

In terms of optical properties, the formation of BrC (direct emissions and chemistry) and its 

processing via bleaching and browning is critical for the accurate simulation of SOA scattering, absorption, 

and forcing. Given the large diversity of what really BrC is, it appears likely that for climate purposes 

simulating the evolution of the refractive index of OA is an achievable target, rather than simulating 

numerous individual chromophores and their atmospheric fate. The wavelength dependence of the 

refractive indices of both BrC and “white” SOA should also be investigated experimentally, from the near-

UV to the IR. The timescale of bleaching is expected to be a very important and uncertain parameter in 

these calculations, given the range of half-lives estimated in the field and in laboratory experiments that 

span from a few minutes to more than half a day [99, 154].  

Two additional important parameters affect SOA burden and optical properties: its hygroscopicity 

and its microphysics (size distribution and mixing state). Since it is well established that SOA is generally 
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hydrophilic, and is becoming even more with aging, a simple parameterization might suffice for climate 

models. The size distribution of SOA affects optical properties, but if a wavelength dependent refractive 

index is known (either for white or brown SOA) simple calculations based on each model’s assumptions 

on aerosol microphysics can be used to parameterize this effect for climate applications.  

Finally, it is stated that almost all OA in the atmosphere is chemically processed, which moves us 

to a new view of OA in the atmosphere and its modeling: from primary inert POA in the past, to chemically 

processed and reactive SOA, including BrC, now and in the future. The years to come are expected to 

unveil the next generation of OA models with exciting new capabilities that will likely help us promote our 

understanding of the Earth system as a whole and understand its evolution in time.  
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Tables 

Table 1 Refractive indices of OA at 550 nm used in selected models. Unless BrC is explicitly simulated, POA 

and SOA are assumed to have the same refractive index, except for one model. Data from the references 

listed and from AeroCom (https://wiki.met.no/aerocom/optical_properties). 

Model Refractive index Reference 

BCC 1.53-0.0059i  

CAM4-Oslo 1.53-0.006i [155] 

CAM5-MAM3 1.53-0.005665i  

GEOS-Chem 1.53-0.008i (insoluble) 

1.53-0.006i (soluble) 

[69] 

GEOS-Chem-APM 1.45-0.001i [71, 70] 

GISS ModelE 1.527-0.014i  

GMI 1.53-0.006i [156] 

GOCART 1.53-0.006i [156] 

HADGEM2-ES 1.54-0.006i (fossil fuel) 

1.43-0.0i (SOA) 

[40] 

MPIHAM 1.53-0.008i (insoluble) 

1.53-0.006i (soluble) 

[69, 157] 

SPRINTARS 1.53-0.006i  

TM5 1.53-0.0055i  
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Figures, created with IDL 

 

Fig. 1 GISS-E2-R model simulations of isoprene emissions (a), SOA formation due to partitioning of semi-

volatile gases (b), POA (c) and SOA (d) burden, and SOA shortwave (e) and longwave (f) forcing. The plots 

present the historical period (1850-2005; black), the 4 RCP CMIP5 scenarios (2006-2100; RCP2.6: green; 

RCP4.5: blue; RCP6.0: orange; RCP8.5: red), and the first 250 years of the preindustrial control (dark grey). 

Also shown the 5 ensemble members for the historical period and RCP4.5 (light grey) 


